visit www.rlang.al

Motivation

R ang

-> Learning tabula rasa is hard and
requires an unreasonable number of
samples.

-> When teaching humans a new task, it
IS hatural to lend advice to speed-up
learning. This advice typically
contains partial information about
goal states, rewards, best actions,
relevant intermediate tasks, etc.

- We sought to formalize advice-giving
so that humans can easily provide
meaningful guidance to RL agents.

What can we express with
RLang?

- RlLang provides a formal,
unambiguous, and unifying
framework for expressing
task-specific information.

=> RLang provides syntax to specity
information about an MDP's:

€ Model: Rewards and Dynamics,

€ Solution: Policy Hints and Policy
Priors,

€& Abstractions and Features:
Subpolicies (as Options) and
State Features.

What's next?

-> RLang unifies the varied features of
other DSLs previously proposed;
thus, it can more effectively be used
as a universal store of
symbol-oriented knowledge for RL
agents in natural language grounding
research;

-=> RlLang enables research on
nheuro-symbolic RL; agents can
reason and behave using both
symbolic and latent
knowledge/policies.

-> RLang enables research in general
informed RL methods.

A Declarative Language for Expressing Prior

Knowledge for Reinforcement Learning

Rafael Rodriguez-Sanchez

Benjamin Spiegel Jennifer Wang
Department of Computer Science,

Roma Patel

Brown University

Stefanie Tellex George Konidaris

RLang proposes a unified system for providing

Factor inventory := S[250:270]

Feature wood :

% Feature gold :
— Effect:

if at_workbench 1 and A == use:

i1f wood >= 1:
stick’
wood’ -> 0

inventory[0]

inventory[1]

-> stick + wood

minecraft.rlang

Interpreter

RL agents with task-specific, grounded advice
that helps them learn faster than tabula rasa

Dynamics & Task

Knowledge i
=
| o= |
Solution Knowledge Informed
RL Agent

~N O W B W N =

10
11
12
13
14

Demonstrations

2D-Minecraft: Hierarchical Structure

1 Option go_to_workshop_0:

2 init(any):

3 Execute go_to_workshop_0_learnable_policy
4 until (at_workshop_0)

5 Option go_to_workshop_1:

6 init (any):

7 Execute go_to_workshop_1_learnable_policy
8 until (at_workshop_1)

9 Option get_wood:

10 init (there_is_wood):

11 Execute get_wood_learnable_policy
12 until delta_wood >= 1

13 Option build_plank:

14 init(wood >= 1 and at_workshop_1):

15 Execute use

16 until (delta_plank >= 1)

17 Option build_stick:

18 init (wood >= 1 and at_workshop_1)

19 Execute use

20 until (delta_stick >= 1)

21 Option build_ladder:

22 init (stick >= 1 and plank >= 1)
23 Execute use

24 until (delta_ladder >= 1)

1.0
—e— RLang

—a— Uninformed

Average Reward
o o o
= (@) (00}

o
N

o
o

0O 50 100 150 200 250 300 350 400
Step Number (x1000)

Lunarlander: Policy Prior

Policy land:
if (left_leg_in_contact == 1.0) or (right_leg_in_contact == 1.0)
if (velocity_y/2 « -1.0) > 0.05:
Execute main_engine
else:
Execute do_nothing
elif remaining_hover > remaining_angle and remaining_hover > -1
x+ remaining_angle and remaining_hover > 0.035:
Execute main_engine
elif remaining_angle < -0.035:
Execute right_thruster
elif remaining_angle > 0.05:
Execute left_thruster
else:
Execute do_nothing

200 f :

/

0 50 100 150 200 250 300 350 400
Step Number (x1000)

[
o
o o

Average Reward
|
=
o
o

—e— RLang
—=— Uninformed
Advice Policy

I
N
o
o

