
RLang: A Declarative Language for Expressing
Prior Knowledge for Reinforcement Learning

Rafael Rodriguez-Sanchez
Department of Computer Science

Brown University
Providence, RI

rrs@brown.edu

Benjamin Spiegel
Department of Computer Science

Brown University
Providence, RI

bspiegel@cs.brown.edu

Jennifer Wang
Department of Computer Science

Brown University
Providence, RI

jennifer wang2@brown.edu

Roma Patel
Department of Computer Science

Brown University
Providence, RI

romapatel@brown.edu

Stefanie Tellex
Department of Computer Science

Brown University
Providence, RI

stefie10@cs.brown.edu

George Konidaris
Department of Computer Science

Brown University
Providence, RI

gdk@cs.brown.edu

Abstract

Communicating useful background knowledge to reinforcement learning (RL) agents is an important and effective
method for accelerating learning. Oftentimes, a concise piece of information might considerably improve the agent’s
learning performance. For instance, do not fall in lava pits!. However, there is no standardized and expressive enough
medium to provide such type of information. Therefore, we introduce RLang, a domain-specific language (DSL) for
communicating domain knowledge to an RL agent. Unlike other existing DSLs proposed by the RL community that
ground to single elements of a decision-making formalism (e.g., the reward function or policy function), RLang can spec-
ify information about every element of a Markov decision process. We define precise syntax and grounding semantics
for RLang such that RLang programs ground to algorithm-agnostic partial world model and policy that can be exploited
by an RL agent. Finally, we provide some example RLang programs to introduce the language expressions, and provide
a simple example that show how RL methods can effectively exploit the resulting knowledge.

Keywords: Reinforcement Learning, Language



1 Introduction

Reinforcement learning tasks are often impractically hard to solve tabula rasa. Fortunately, even a small amount of prior
knowledge about the world—knowledge that is often either seemingly obvious or easy for a human to produce—can
dramatically improve learning. For instance, knowing about the action dynamics of a game (e.g., you can jump to avoid
falling into pits) or properties of its state (e.g., that a particular state variable indicates a block of lava) can prevent an
agent from making poor decisions. In long-horizon tasks, especially those with sparse rewards, such knowledge may
even be a prerequisite for finding an acceptable policy.

Languages, both formal and natural, have been used in various ways to add prior knowledge into decision-making
Luketina et al. [2019]. Formal languages benefit from unambiguous syntax and semantics, and can therefore be reli-
ably used to represent knowledge. These have proven useful in specifying advice to agents in the form of hints about
actions Maclin and Shavlik [1996] or policy structure Andreas et al. [2017]. Communicating such knowledge using nat-
ural language would be more intuitive, though this approach would require converting natural language sentences into
grounded knowledge usable by the agent; most of the approaches in this area restrict the possible groundings by trans-
lating natural language into expressions of a restricted grammar. For example, for describing task objectives Artzi and
Zettlemoyer [2013], Patel et al. [2020], or other individual components of decision-making systems such as rewards Goyal
et al. [2019], Sumers et al. [2021] and policies Branavan et al. [2010]. All of the above approaches provide information
about a single component of a chosen decision-making formalism; there exists no unified framework able to express
information about all the components of a task.

We therefore introduce RLang, a domain-specific language (DSL) that can specify information about every component
of a Markov decision process (MDP), including flat and hierarchical policies, state factors, state features, transition func-
tions, and reward functions. RLang is human-readable and compiles into simple data structures that can be accessed
by any learning algorithm. We explain how to write statements that inform each MDP component. Finally, we show a
simple example of how RLang can help improve performance of an RL agent.

2 Notation

Reinforcement learning tasks are typically modeled as Markov Decision Processes (MDPs; Puterman, 1990), which are
defined by a tuple (S,A, R, T, γ), where S is a set of states, A is a set of actions, T : S × A × S → [0, 1] is a transition
probability distribution, R : S × × → R is a reward function, and γ ∈ (0, 1] is a discount factor. A solution to an MDP is
a policy π : S × A → [0, 1] that maximizes the expected discounted return [

∑∞
t=0 γ

trt], where rt is the reward obtained
at time step t. The value function V π : S → R for a policy π captures the expected return an agent would receive from
executing π starting in a state s. The action-value function Qπ : S × A → R of a policy is the expected return from
executing an action a in a state s and following policy π thereafter. Options [Sutton et al., 1999] formalizes temporally-
extended actions: closed-loop policies defined by a tuple (I, π, β), where I ⊆ is a set of states in which the option can be
executed, π is an option policy, and β :→ [0, 1] describes the probability that the option will terminate upon reaching a
given state.

3 RLang: Expressing Prior Knowledge about Reinforcement Learning Tasks

If RL is to become widely used in practice, we must reduce the infeasible amount of trial-and-error required to learn to
solve a task from scratch. One promising approach is to avoid tabula rasa learning by including the sort of background
knowledge that humans typically bring to a new task. Such background knowledge is often easy to obtain—in many
cases, it is simply obvious to anyone: try not to fall off cliffs!—and need not be perfect or complete in order to be useful.

Unfortunately, there is no standardized approach to communicating such background knowledge to an RL agent. In most
cases, the same person who implements the learning algorithm also hand-codes the background knowledge, typically
in the same general-purpose programming language in which the algorithm is implemented, typically in an ad-hoc
fashion. This has two primary drawbacks. First, prior knowledge is often task-specific, and the lack of a medium to
express it hinders the development of general-purpose learning algorithms that can exploit varying types and degrees of
background knowledge. Second, this approach is not accessible to end-users or other consumers of RL agents, who do
not write the algorithms themselves and cannot necessarily be expected to master the relevant programming languages
and mathematical details, but who might nevertheless wish to accelerate learning.

We propose RLang, a DSL designed to be a standardized medium to provide background knowledge to RL agents in an
algorithm-agnostic manner. RLang programs can be parsed using our Python package into an algorithm-agnostic data
structure that can be integrated into nearly any reinforcement learning algorithm. In this section, we describe the main
RLang element types and expressions that compose RLang programs.

1



3.1 RLang Elements

State Factors In Factored MDPs, the state space is a collection of conditionally independent variables: S = X1× ..×Xn.
For example, consider a 2-D version of Minecraft where an agent has to collect ingredients to craft new tools and objects.
In this environment the state is the concatenation of a position vector, a flattened map representation, and an inventory
vector: s = (pos,map, inventory). Factors can be used to reference these independent state variables:

Factor position := S[0:2]
Factor map := S[2:250]
Factor inventory := S[250:270]

S is a reserved keyword referring to the current state. A and S’ are also keywords which refer to the current action and
the next state, respectively.

State Features RLang can also be used to define more complex functions of state. For instance, if the agent’s goal is to
build axes, we can define a Feature that captures the number of axes that can be potentially built at the current state:
Feature number of axes := wood + iron.

Propositions Propositions in RLang, which are functions of the form S → {, }, identify states that share relevant
characteristics:

Constant workbench_locations := [[1, 0], [1, 3]]
Proposition at_workbench := position in workbench_locations
Proposition have_bridge_material := iron >= 1 and wood >= 1

Markov Features Markov Functions like the action-value function or transition function take the form ×× → R. We
extend the co-domain of this function class to Rn, where n ∈ N , and introduce Markov Features, which allow users
to compute features on an (s, a, s′) experience tuple. The following Markov Feature represents a change in inventory ele-
ments: Markov Feature inventory change := inventory’ - inventory. The prime (’) operator references
the value of an RLang name when evaluated on the next state.

Policies Policy functions can also be specified in RLang using conditional expressions:
Policy main:

if iron >= 2:
if at_workbench:
Execute Use # This is an action

else:
Execute go_to_workbench # This is a policy

else:
Execute collect_iron

The Execute keyword can be used to execute an action or call another policy. The above policy instructs the agent
to craft iron tools at a workbench by first collecting iron and then navigating to the workbench. Policies can also be
probabilistic.

Options Temporally-extended actions can be specified using Options, which include initiation and termination
propositions:

Option build_bridge:
init have_bridge_material and at_workbench

Execute craft_bridge
until bridge in inventory

Action Restrictions Restrictions to the set of possible actions an agent can take in a given circumstance can be specified
using ActionRestrictions:

ActionRestriction dont_get_burned:
if (position + [0, 1]) in lava_locations:

Restrict up

Effects Effects provide an interface for specifying partial information about the transition and reward functions.
When using a factored MDP, RLang can also be used to specify factored transition functions (i.e., transition functions for
individual factors):

Effect movement_effect:
if x_position >= 1 and A == left:

x_position’ -> x_position - 1
Reward -0.1

2



The above Effect captures the predicted consequence of moving left on the x position factor, stating that the x posi-
tion of the agent in the next state will be 1 less than in the current state. This Effect also specifies a −0.1 step penalty
regardless of the current state or action. Moreover, a main Effect designates the primary environment dynamics, and
grounds to a partial factored world model (T ,R). Similar to policies, Effects can be made probabilistic using with.

0 50 100 150 200 250 300 350 400
Step Number (x1000)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Re
wa

rd

RLang
Uninformed

Figure 1: Average return curves for hierarchical
agent informed with relevant options.

4 Demonstrations

We consider a 2D version of Minecraft based on Andreas et al. [2017],
consisting of a gridworld that contains workbenches where the agent
can craft new objects, and raw materials like wood, stone and gold. To
build an item, the agent must have the required ingredients and be in
the correct workbench. The agent has the action use to interact with
elements, and actions to move in the cardinal directions. We show
how providing the sub-policy structure of the task improves perfor-
mance. Specifically, we provide the agent with initiation and termi-
nation conditions for a few options (to collect wood, go to the three
different workshops and to build the required elements), leaving the
agent to learn the policy over options. The following program con-
cisely defines 3 options fully and 4 options with uninformative poli-
cies. This is an example of a simple RLang program that conveys par-
tial hierarchical structure that effectively help the agent.

Option go_to_workshop_0:
init(any):
Execute go_to_workshop_0_learnable_policy

until(at_workshop_0)
Option go_to_workshop_1:

init(any):
Execute go_to_workshop_1_learnable_policy

until(at_workshop_1)
Option go_to_workshop_2:

init(any):
Execute go_to_workshop_2_learnable_policy

until(at_workshop_2)
Option get_wood:

init(there_is_wood):
Execute get_wood_learnable_policy

until delta_wood >= 1
Option build_plank:

init(wood >= 1 and at_workshop_1):
Execute use

until (delta_plank >= 1)
Option build_stick:

init (wood >= 1 and at_workshop_1):
Execute use

until (delta_stick >= 1)
Option build_ladder:

init (stick >= 1 and plank >= 1):
Execute use

until (delta_ladder >= 1)

To exploit this information, the agent must learn both the policy over options to maximize reward, and the option
policies that achieve each option’s termination condition. For both the high-level and low-level agents, we use the
DDQN algorithm Van Hasselt et al. [2016].

Figure 1 show the average return of RLang-informed hierarchical DDQN Van Hasselt et al. [2016] vs. the uninformed
(flat) performance of a DDQN agent. The results show that providing a concise program partially describing a hierarchi-
cal solution was sufficient to successfully learn to solve the task, in stark contrast with the uninformed DDQN agent.

5 Formal Languages in Reinforcement Learning

In classical planning it is standard to use the Planning Domain Description Language (PDDL; Ghallab et al. 1998) and
its probabilistic extension PPDDL (probabilistic PDDL; Younes and Littman, 2004) to specify the complete dynamics of
a factored-state environment. RLang is inspired by these but it is intended for a fundamentally different task: providing

3



partial knowledge to a learning agent, where the knowledge might correspond to any component of the underlying
MDP. Maclin and Shavlik [1996] propose an RL paradigm in which the agent may request advice, as provided through
a DSL that uses propositional statements to provide policy hints. Similarly, Sun et al. [2020] propose to learn a policy
conditioned on a program from a DSL. Andreas et al. [2017] use a simple grammar to represent policies as a concatenation
of primitives (sub-policies) to provide RL agents with knowledge about the hierarchical structure of the tasks. Other
languages include linear temporal logic (LTL; Littman et al., 2017, Jothimurugan et al., 2019) which has been used to
describe goals for instruction-following agents. These methods ground LTL formulae to reward functions for the agent.
RLang expands on all of these DSLs to include information beyond the policy and the reward function, thus allowing a
wider array of information to be parsed and interpreted by the agent.

6 Conclusion

RLang is a precise, concise and unambiguous domain-specific language designed to make it easy for a human to provide
background knowledge—about any component of a task—to an RL agent. RLang’s formal semantics also serve as a
unified framework under which to study and compare RL algorithms capable of exploiting background knowledge
to improve learning. The examples in this paper provide use-cases in which RLang is used to provide diverse type
of domain knowledge and structure, clearly demonstrating that simple and intuitive RLang programs describing task
knowledge can effectively improve learning performance over tabula rasa methods.

References
Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with policy sketches. In

Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 166–175. JMLR. org, 2017.
Yoav Artzi and Luke Zettlemoyer. Weakly supervised learning of semantic parsers for mapping instructions to actions.

Transactions of the Association for Computational Linguistics, 1:49–62, 2013.
SRK Branavan, Luke S Zettlemoyer, and Regina Barzilay. Reading between the lines: Learning to map high-level instruc-

tions to commands. Association for Computational Linguistics, 2010.
Malik Ghallab, Adele Howe, Craig Knoblock, Drew McDermott, Ashwin Ram, Manuela Veloso, Daniel Weld, and David

Wilkins. Pddl—the planning domain definition language. 1998.
Prasoon Goyal, Scott Niekum, and Raymond J Mooney. Using natural language for reward shaping in reinforcement

learning. arXiv preprint arXiv:1903.02020, 2019.
Kishor Jothimurugan, Rajeev Alur, and Osbert Bastani. A composable specification language for reinforcement learning

tasks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Michael L Littman, Ufuk Topcu, Jie Fu, Charles Isbell, Min Wen, and James MacGlashan. Environment-independent task
specifications via gltl. arXiv preprint arXiv:1704.04341, 2017.

Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob Foerster, Jacob Andreas, Edward Grefenstette, Shimon
Whiteson, and Tim Rocktäschel. A survey of reinforcement learning informed by natural language. arXiv preprint
arXiv:1906.03926, 2019.

Richard Maclin and Jude W Shavlik. Creating advice-taking reinforcement learners. Machine Learning, 22(1):251–281,
1996.

Roma Patel, Ellie Pavlick, and Stefanie Tellex. Grounding language to non-markovian tasks with no supervision of task
specifications. In Proceedings of Robotics: Science and Systems, June 2020.

Martin L Puterman. Markov decision processes. Handbooks in Operations Research and Management Science, 2:331–434,
1990.

Theodore R Sumers, Mark K Ho, Robert D Hawkins, Karthik Narasimhan, and Thomas L Griffiths. Learning rewards
from linguistic feedback. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 6002–6010,
2021.

Shao-Hua Sun, Te-Lin Wu, and Joseph J. Lim. Program guided agent. In International Conference on Learning Representa-
tions, 2020.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for temporal abstrac-
tion in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

Håkan LS Younes and Michael L Littman. Ppddl 1.0: The language for the probabilistic part of ipc-4. In Proc. International
Planning Competition, 2004.

4


