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PROBLEM
• The agent has solved a finite set of source tasks
Mτ1 ,Mτ2 , . . . ,MτM sampled from some distribu-
tion D

• Each task is an MDPMτ = 〈S,A,Pτ ,Rτ , p0〉

• A parametric approximation to their optimal
value functions is available

Ws = {w1,w2, . . . ,wM} s.t. Qwj
' Q∗τj

• Assumption: all tasks share similarities in their
optimal value functions [4]

• Goal: use this knowledge to speed-up the learning
process of a new target taskMτ sampled from D

MOTIVATION
• Reinforcement learning algorithms have enjoyed

many success stories in complicated tasks

• High sample complexity remains a major issue

• Must adapt to changing environments and goals

• Prior knowledge from related tasks is often avail-
able in practice→ Transfer learning [6]

• Need for transfer algorithms that are general and
widely applicable

VARIATIONAL TRANSFER FRAMEWORK
IDEA: use the source weightsWs to estimate the distribution p(w) over optimal Q-functions induced by D

• How to characterize p(w|D) ∝ p(D|w)p(w) given a dataset D of N samples from the target task?

• PAC-Bayes argument [3]: the likelihood p(D|w) decays exponentially as the TD error of Qw on D increases

p(w|D) ' e−Λ‖Bw‖2Dp(w)∫
e−Λ‖Bw′‖2Dp(dw′)

• Problem: computing the Gibbs posterior is often intractable→ Variational approximation [1]

min
ξ∈Ξ
L(ξ) = Ew∼qξ

[
‖Bw‖2D

]
+
λ

N
KL (qξ(w) || p(w))

MAIN PROPERTIES

1. Prior estimation: summarize the information to transfer
into a single distribution and use it to guide the learning
process of the target task

2. Exploration via posterior sampling [5, 2]: at each time,
the agent guesses the solution of the target task according
to the current posterior and acts accordingly

3. Black-box optimization: minimizing the variational objec-
tive requires only differentiability of the models involved

Algorithm Variational Transfer
Input: Target taskMτ , source weightsWs

Estimate prior p(w) fromWs

ξ ← argmin
ξ
KL(qξ||p), D ← ∅

repeat
Sample initial state: s0 ∼ p0
while sh is not terminal do

ah = argmax
a
Qw(sh, a) forw ∼ qξ(w)

sh+1 ∼ Pτ (·|sh, ah), rh+1 = Rτ (sh, ah)
D ← D ∪ 〈sh, ah, rh+1, sh+1〉
ξ ← optimizer (ξ,∇ξL(ξ))

end while
until forever

PRACTICAL ALGORITHMS
GAUSSIAN VARIATIONAL TRANSFER (GVT)

• Prior: p(w) = N (µp,Σp)

• Posterior: qξ(w) = N (µ,Σ)

MIXTURE OF GAUSSIAN VARIATIONAL TRANSFER (MGVT)

• Prior: p(w) = |Ws|−1
∑

ws∈Ws

N (w|ws, σ2
pI)

• Posterior: qξ(w) = C−1
∑

i=1,...,C
N (w|µi,Σi)

FINITE-SAMPLE ANALYSIS
Bound the expected Bellman error under the optimal variational distribution for a dataset of N samples

Eq
ξ̂

[∥∥∥B̃w∥∥∥2

ν

]
≤ 2

∥∥∥B̃w∗∥∥∥2

ν
+ υ(w∗) + c1

√
log 2

δ

N
+
c2 + λd logN + λ ϕ (Ws)

N
+

c3
N2

1. Approximation error due to the limited hypothesis space

2. Variance due to a biased estimation of the Bellman error

3. Variance due to the finite samples

4. Likelihood of the optimal target weights under the prior

GVT: Distance to the prior mean

ϕ(Ws) = ‖w∗ − µp‖Σ−1
p

MGVT: Softmin distance to the sources

ϕ(Ws) = softmin
w∈Ws

(
‖w∗ −w‖

)

CONTRIBUTIONS

1. Algorithmic. We propose a general framework for
transferring value functions in RL and two practi-
cal algorithms

• We learn a prior distribution over optimal Q-
functions using the given source tasks

• Variational approximation of the corre-
sponding posterior for a new target task

• Efficient exploration via posterior sampling

• Any differentiable Q-function approximator
and prior/posterior models could be used

2. Theoretical. We provide a theoretical analysis of
our practical algorithms offering a better insight
into their behavior

3. Empirical. We empirically evaluate our algo-
rithms on four different domains with increasing
level of difficulty

EMPIRICAL RESULTS
THE ROOMS PROBLEM
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One door moving
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CLASSIC CONTROL

Cartpole
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MAZE NAVIGATION

Maze #1
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Maze #2
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No transfer (DDQN)
Fine-tuning from random source task

GVT
MGVT with 1 component
MGVT with 3 components
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